EVALUACIÓN DE DOS MODELOS MECANÍSTICOS EN LA EXCRECION DE N EN VACAS LECHERAS ALIMENTADAS CON ENSILADOS DE HIERBA CONSERVADOS CON ÁCIDO FORMICO O ENSILADO DE MAIZ

Salcedo Díaz, G.

Dpto. de Tecnología Agraria del I.E.S. "La Granja", 39792 Heras, Cantabria E-mail: gregoriosalce:@ono.com

INTRODUCCION

Entre los diferentes modelos de racionamiento, el *Net Carbohydrate and Protein System* (CNCPS 5.0) propuesto por Fox *et al.*, (2003) es un modelo diseñado para condiciones intensivas, quién integra una serie de ecuaciones que describen los procesos fisiológicos del ganado. Sin embargo, en condiciones semi-intensivas (pastoreo o ensilados) con bajos aportes de concentrado, la literatura considera ciertas reservas del CNCPS para vacas de alta producción, sugiriendo la necesidad de crear un modelo nutricional para tales condiciones (Edwards y Parker, 1994; Muller *et al.*, 1995). El modelo HERAS (Salcedo, 2006), es un modelo mecanístico desarrollado en condiciones experimentales semi-intensivas, quien partiendo de componentes nutricionales, estima la excreción de nitrógeno en heces y orina, así como la utilización para leche. El objetivo del presente trabajo es comparar dichos modelos en condiciones de alimentación con ensilados fermentados con diferentes conservantes o suplementados con otros forraies.

MATERIAL Y METODOS

Las dietas y los animales empleados ya fueron descritos en otra comunicación presentada en estas mismas Jornadas.

Modelos evaluados

- a) CNCPS 5.0 (Fox et al., 2003): los datos introducidos para validar el CNCPS se dividieron en dos categorías: primero "animal", que incluía la producción láctea, composición química, peso vivo, ingestión de alimento, número de parto, peso vivo y días de lactación. La segunda: "alimento", que incluía, cenizas, proteína bruta, fibras neutro y ácido detergente, proteína ligada a ambas, lignina, grasa, almidón, proteína soluble, nitrógeno no proteico y carbohidratos no fibrosos. La tasa de degradación de los carbohidratos fue tomada de la propia base de datos del CNCPS y la proteína soluble según los resultados procedentes de la incubación en rumen obtenidos mediante la técnica "in sacco" (Mehrez y Ørskov, 1977) para un ritmo de paso k=0,06 h⁻¹. Como FND fisiológicamente efectiva (peNDF) se consideró el 80% de la total, por tratarse de forraie de alta calidad (Mertens. 1997).
- **b) HERÁS** (Salcedo, 2006): las ecuaciones evaluadas se agruparon en dos categorías:

1) dietas con ensilados:

N heces (g/d) = 65,1 + 36,4 PNDR_i +5,48 F_i; \pm 9,16 r^2 =0,91; n = 1101 N orina (g/d) = 137,8 - 40,5 Alm_i + 0,26 N_i; \pm 14,2 r^2 =0,82; n = 1101 N heces + orina (g/d) = 19,4 + 88,9 PDR_i + 13,6 FND_i; \pm 17,6 r^2 =0,91; n = 1101 % N excretado en leche = 22,4 - 4,14 PB_i + 3,14 Alm_i; \pm 3,72 r^2 =0,39; n = 1663

2) dietas con ensilados y forrajes verdes:

N heces (g/d) = -106,8 + 41,1 PNDR_i +12,4 MS_i; \pm 15,8 r^2 =0,89; n = 1534 N orina (g/d) = -90,2 + 11,3 g PB/MJ EM + 8,62 FND_i; \pm 15,8 r^2 =0,65; n = 1534 N heces + orina (g/d) = -60,1 + 86,4 PDR_i + 10,4 MS_i; \pm 0,88 r^2 =87; n = 1534 % N excretado en leche = 34,12 – 0,048 N_i + 0,68 MOD_i; \pm 4,31 r^2 =0,37; n = 2697

 $PNDR_i$ = Proteína No Degradable en Rumen (kg/d); MS_i = Materia Seca ingerida (kg/d); gr PB/MJ EM = Proteína Bruta por Megajulio de Energía Metabolizable (gr/MJ); FND_i = Fibra Neutro Detergente ingerida (kg/d); F_i = Forraje ingerido (kg/d); PDR_i = Proteína Degradable en Rumen ingerido (kg/d); AIm_i = Almidón ingerido (kg/d); N_i = Nitrógeno ingerido (kg/d); PB_i = Proteína Bruta ingerida (kg/d); MOD_i = Materia Orgánica Digestible ingerida (kg/d).

Los resultados de cada ensilado, vaca y día se introdujeron en el CNCPS y HERAS para obtener las correspondientes estimaciones de cada uno de ellos analizando los valores observados vs estimados mediante análisis de regresión con el PROC REG (SAS, 1988).

RESULTADOS Y DISCUSION

La excreción de N observada y la estimada por el modelo Heras (Salcedo, 2006) y CNCPS (Fox et al., 2003) vienen reflejada en la Tabla 1. Para el conjunto de datos observados, el N de las heces fue 172±1,5 g N/d, similares al modelo HERAS (171±2,2 g N/d) e inferior al estimado por el CNCPS (208±1,9 g de N/d) (Tabla 1). Por su parte Haig et al., (2002), también observaron una sobreestimación en el N de las heces por el CNCPS en 24,6 g N/d cuando las vacas lecheras son alimentadas con dietas mezcladas que contienen 2,82 g N/100 g de MS, muy semejantes a los resultados obtenidos en el presente trabajo de 36 g N/d para el conjunto de datos. No obstante, para los ensilados estudiados, el N de las heces observado presenta mejor coeficiente de determinación en el modelo HERAS que el CNCPS (r²=0,63 vs 0,24) (Tabla 2).

Tabla 1 Ingestión y excreción de N por ensilado y sistema

ingestion y exerces in de it per chendre y eletenia							
	1º Experimento		2°	2º Experimento		Sig.	
Observado	EHEM	ETriEM	EHEM	EHAF	EHSC	et	Sig
MS ingerida (kg/d)	19,8	19,75	21,0	20,7	17,8	0,20	***
N ingerido (% sms)	2,38	2,34	2,38	2,44	2,6	0,012	***
N ingerido (g/d)	473	463	501	506	461	4,28	***
N Heces (g/d)	181	175	168b	166	168	1,51	***
N Orina (g/d)	152	145	164	153	174	1,61	***
N Heces + Orina (g/d)	333	316	332	319	342	2,45	***
N Leche (% ingerido)	21,75	20,92	18,2	18,36	17,48	0,29	***
HERAS	EHEM	ETriEM	EHEM	EHAF	EHSC	et	Sig
N Heces (g/d)	187	177	162	162	168	2,21	***
N Orina (g/d)	147	146	167	166	181	2,03	***
N Heces + Orina (g/d)	334	324	328	328	321	2,52	NS
N Leche (% ingerido)	20,32	20,68	18,52	18,38	16,45	0,23	***
CNCPS	EHEM	ETriEM	EHEM	EHAF	EHSC	et	Sig
N Heces (g/d)	213	211	213	213	189	1,92	***
N Orina (g/d)	161	155	201	209	222	4,20	***
N Heces + Orina (g/d)	374	366	414	422	411	4,45	***
N Leche (% ingerido)	19,9	20,3	20,5	20,4	22,1	0,13	***

	Sig	nificación		
	Heces	Orina	Heces+Orina	% N leche
Experimento	***	***	NS	***
Ensilado	***	***	***	NS
Sistema	***	***	***	***
Ensilado x Sistema	***	***	***	***

	Sistema			
Observado	HERAS	CNCPS	et	Sig
172	171	208	1,77	***
158	162	189	2,0	***
329	327	397	3,27	***
19,3	18,9	19,7	0,15	*
	172 158 329	Observado HERAS 172 171 158 162 329 327	Observado HERAS CNCPS 172 171 208 158 162 189 329 327 397	Observado HERAS CNCPS et 172 171 208 1,77 158 162 189 2,0 329 327 397 3,27

^{***}p<0,001; ** p<0,01; *p<0,04; NS: no significativo a (P>0,05); et: error típico de la media

El N de la orina observado fue $158\pm1,6$ g N/d, sin diferencias significativas con el modelo HERAS ($161\pm2,0$ g) y mayor (P<0,001), respecto al CNCPS ($189\pm4,2$ g) (Tabla 1). En cualquier caso, para vacas alimentadas con raciones con 80% de forraje, e independientemente si es ensilado de hierba o hierba verde más ensilado, el 70% del N procedente de la orina es explicado por el modelo HERAS y, el 57% por el *Net Carbohydrate and Protein System*. No obstante, entre modelos, la correlación resultante fue ($r^2=0,90$).

El 70% del N excretado en leche es explicado por el modelo HERAS, sin relación significativa respecto al CNCPS. Posiblemente, el modelo HERAS diseñado para bajos consumos de concentrado y elevadas ingestiones de ensilado, al igual que

en el presente trabajo, represente una eficiencia en la utilización del N para la producción de leche más semejante. No obstante, las diferencias entre las estimaciones por el CNCPS y HERAS, son incuestionables, atribuido a las diferencias intrínsecas de partida en los sistemas de alimentación (intensivos vs semi-intensivos) de cada modelo.

CONCLUSIONES

Independientemente del tipo de conservante añadido al ensilado de hierba, el *Net Carbohydrate and Protein System* estima cantidades de N más elevadas que el modelo HERAS, tanto el N de las heces y de la orina, como el N total. Sin embargo, los porcentajes de N recuperado en leche son muy semejantes. Entre sistemas (CNCPS *vs* HERAS), la mejor relación se obtiene con el N procedente de la orina.

Tabla 4
Predicción de la excreción de N según sistema de valoración

	Y = a + bx	R ²	ES	n
	Observado vs HERAS			
N heces (g/d)	Y = 78,88 + 0,54 HERAS s.e. ±10,28*** ±0,06**	0,63	6,55	55
N orina (g/d)	Y = 50.5 + 0.66 HERAS s.e. $\pm 10.08^{***} \pm 0.062^{***}$	0,70	6,26	55
N heces + orina (g/d)	Y = 114,7 + 0,65 HERAS s.e. ±34,12*** ±0,104***	0,45	12,9	55
N leche (% ingerido)	Y = -0,246 + 1,03 HERAS s.e. ±1,85*** ±0,098***	0,70	1,15	55
-	Observado vs CNCPS			
N heces (g/d)	Y = 92,35 + 0,38 CNCPS s.e. ±0,38 ±0,099	0,24	9,42	55
N orina (g/d)	Y = $102.8 + 0.289$ CNCPS s.e. ± 6.94 ± 0.036	0,57	7,53	55
N heces + orina (g/d)	Y = $209,2 + 0,30$ CNCPS s.e. $\pm 0,30^{***} \pm 0,067^{***}$	0,29	14,7	55
N leche (% ingerido)	-	NS	-	55
	HERAS vs CNCPS			
N heces (g/d)	Y =36,38 + 0,64 CNCPS s.e. ±28,45 ^{NS} ±0,137***	0,32	13,04	55
N orina (g/d)	Y = $74,07 + 0.46$ CNCPS s.e. $\pm 4,04 \pm 0.021$	0,90	4,38	55
N heces + orina (g/d)	Y = $197.9 + 0.32$ CNCPS s.e. $\pm 26.63^{***} \pm 0.067^{***}$	0,33	14,74	55
N leche (% ingerido)	· <u>-</u>	NS	-	55

^{***}p<0,001; ** p<0,01; *p<0,05; **NS**: no significativo a (p>0,05); **e.s**.: error estándar del parámetro estimado; **n**: número de casos; **R**²: coeficiente de determinación

BIBLIOGRAFIA

FOX, D.G.; T.P. TYLUTKI; L.0. TEDESCHI; M.E. VAN AMBURGH; L.E. CHASE; A.N. PELL; T.R. OVERTON; J.B. RUSSELL, 2003. CNCPS version 5.0. Model documentation. *Department of Animal Science, Cornell University* 288 pag.

EDWARDS, N.; PARKER, W. 1994. Proc. N.Z. Soc. Anim. Prod. 54:267-277.

MEHREZ, A.A.; ØRSKOV, E.R., 1977. Journal Agri. Sci., Cambridge 88: 645-650.

MERTENS, D.R., 1997. J. Dairy Sci. 80:1463-1481.

MULLER, L.; KOLVER, E.; HOLDEN, L. 1995. Cornell Nutr. Conf. Feed Manuf., Rochester, NY. Cornell univ., Ithaca, NY.

SALCEDO, G. 2000. Invest. Agr.: Prod. Sanid. Anim. Vol 15 (3):125-135.

SALCEDO, G. 2006. Uso sostenible del nitrógeno en la alimentación de vacas lecheras. Consejería de Medio Ambiente del Gobierno de Cantabria. ISBN: 84-935016-1-1

SAS, 1988. SAS/STAT User's Guide. SAS-Institute Inc.; Cary, NC.